Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 431-443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38406986

RESUMO

Theoretically, the PEP-CK C4 subtype has a higher quantum yield of CO2 assimilation ( Φ CO 2 ) than NADP-ME or NAD-ME subtypes because ATP required for operating the CO2-concentrating mechanism is believed to mostly come from the mitochondrial electron transport chain (mETC). However, reported Φ CO 2 is not higher in PEP-CK than in the other subtypes. We hypothesise, more photorespiration, associated with higher leakiness and O2 evolution in bundle-sheath (BS) cells, cancels out energetic advantages in PEP-CK species. Nine species (two to four species per subtype) were evaluated by gas exchange, chlorophyll fluorescence, and two-photon microscopy to estimate the BS conductance (gbs) and leakiness using a biochemical model. Average gbs estimates were 2.9, 4.8, and 5.0 mmol m-2 s-1 bar-1, and leakiness values were 0.129, 0.179, and 0.180, in NADP-ME, NAD-ME, and PEP-CK species, respectively. The BS CO2 level was somewhat higher, O2 level was marginally lower, and thus, photorespiratory loss was slightly lower, in NADP-ME than in NAD-ME and PEP-CK species. Differences in these parameters existed among species within a subtype, and gbs was co-determined by biochemical decarboxylating sites and anatomical characteristics. Our hypothesis and results partially explain variations in observed Φ CO 2 , but suggest that PEP-CK species probably use less ATP from mETC than classically defined PEP-CK mechanisms.


Assuntos
Dióxido de Carbono , NAD , NADP , Folhas de Planta , Fotossíntese , Trifosfato de Adenosina
2.
New Phytol ; 241(1): 52-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858976

RESUMO

Leaf day respiration (Rd ) strongly influences carbon-use efficiencies of whole plants and the global terrestrial biosphere. It has long been thought that Rd is slower than respiration in the dark at a given temperature, but measuring Rd by gas exchange remains a challenge because leaves in the light are also photosynthesizing. The Kok method and the Laisk method are widely used to estimate Rd . We highlight theoretical limitations of these popular methods, and recent progress toward their improvement by using additional information from chlorophyll fluorescence and by accounting for the photosynthetic reassimilation of respired CO2 . The latest evidence for daytime CO2 and energy release from the oxidative pentose phosphate pathway in chloroplasts appears to be important to understanding Rd .


Assuntos
Dióxido de Carbono , Respiração Celular , Dióxido de Carbono/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Respiração
3.
Physiol Plant ; 175(5): e13992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882292

RESUMO

Water-saving attempts for rice cultivation often reduce yields. Maintaining productivity under drought is possible when rice genotypes are bred with improved metabolism and spikelet fertility. Although attempts have been made to introgress water mining and water use efficiency traits, combining acquired tolerance traits (ATTs), that is, specific traits induced or upregulated to better tolerate severe stress, appears equally important. In our study, we screened 90 rice germplasm accessions that represented the molecular and phenotypic variations of 851 lines of the 3 K rice panel. Utilising phenomics, we identified markers linked to ATTs through association analysis of over 0.2 million SNPs derived from whole-genome sequences. Propensity to respond to 'induction' stress varied significantly among genotypes, reflecting differences in cellular protection against oxidative stress. Among the ATTs, the hydroxyl radical and proline contents exhibited the highest variability. Furthermore, these significant variations in ATTs were strongly correlated with spikelet fertility. The 43 significant markers associated with ATTs were further validated using a different subset of contrasting genotypes. Gene expression studies and metabolomic profiling of two well-known contrasting genotypes, APO (tolerant) and IR64 (sensitive), identified two ATT genes: AdoMetDC and Di19. Our study highlights the relevance of polyamine biosynthesis in modulating ATTs in rice. Genotypes with superior ATTs and the associated markers can be effectively employed in breeding rice varieties with sustained spikelet fertility and grain yield under drought.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Secas , Genótipo , Água/metabolismo , Metaboloma
4.
J Exp Bot ; 74(21): 6692-6707, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37642225

RESUMO

Triose phosphate utilization (TPU) is a biochemical process indicating carbon sink-source (im)balance within leaves. When TPU limits leaf photosynthesis, photorespiration-associated amino acid exports probably provide an additional carbon outlet and increase leaf CO2 uptake. However, whether TPU is modulated by whole-plant sink-source relations and nitrogen (N) budgets remains unclear. We address this question by model analyses of gas-exchange data measured on leaves at three growth stages of rice plants grown at two N levels. Sink-source ratio was manipulated by panicle pruning, by using yellower-leaf variant genotypes, and by measuring photosynthesis on adaxial and abaxial leaf sides. Across all these treatments, higher leaf N content resulted in the occurrence of TPU limitation at lower intercellular CO2 concentrations. Photorespiration-associated amino acid export was greater in high-N leaves, but was smaller in yellower-leaf genotypes, panicle-pruned plants, and for abaxial measurement. The feedback inhibition of panicle pruning on rates of TPU was not always observed, presumably because panicle pruning blocked N remobilization from leaves to grains and the increased leaf N content masked feedback inhibition. The leaf-level TPU limitation was thus modulated by whole-plant sink-source relations and N budgets during rice grain filling, suggesting a close link between within-leaf and whole-plant sink limitations.


Assuntos
Oryza , Oryza/genética , Nitrogênio/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Monossacarídeos , Trioses/metabolismo , Grão Comestível/metabolismo , Folhas de Planta/metabolismo , Fosfatos/metabolismo , Aminoácidos/metabolismo
5.
J Exp Bot ; 74(14): 4125-4142, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083863

RESUMO

Chloroplasts movement within mesophyll cells in C4 plants is hypothesized to enhance the CO2 concentrating mechanism, but this is difficult to verify experimentally. A three-dimensional (3D) leaf model can help analyse how chloroplast movement influences the operation of the CO2 concentrating mechanism. The first volumetric reaction-diffusion model of C4 photosynthesis that incorporates detailed 3D leaf anatomy, light propagation, ATP and NADPH production, and CO2, O2 and bicarbonate concentration driven by diffusional and assimilation/emission processes was developed. It was implemented for maize leaves to simulate various chloroplast movement scenarios within mesophyll cells: the movement of all mesophyll chloroplasts towards bundle sheath cells (aggregative movement) and movement of only those of interveinal mesophyll cells towards bundle sheath cells (avoidance movement). Light absorbed by bundle sheath chloroplasts relative to mesophyll chloroplasts increased in both cases. Avoidance movement decreased light absorption by mesophyll chloroplasts considerably. Consequently, total ATP and NADPH production and net photosynthetic rate increased for aggregative movement and decreased for avoidance movement compared with the default case of no chloroplast movement at high light intensities. Leakiness increased in both chloroplast movement scenarios due to the imbalance in energy production and demand in mesophyll and bundle sheath cells. These results suggest the need to design strategies for coordinated increases in electron transport and Rubisco activities for an efficient CO2 concentrating mechanism at very high light intensities.


Assuntos
Dióxido de Carbono , Zea mays , Dióxido de Carbono/metabolismo , NADP/metabolismo , Fotossíntese , Cloroplastos/metabolismo , Folhas de Planta , Células do Mesofilo , Trifosfato de Adenosina/metabolismo
6.
Food Energy Secur ; 12(1): e435, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37035025

RESUMO

The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.

7.
Glob Chang Biol ; 29(2): 505-521, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300859

RESUMO

Extreme climatic events, such as heat waves, cold snaps and drought spells, related to global climate change, have become more frequent and intense in recent years. Acclimation of plant physiological processes to changes in environmental conditions is a key component of plant adaptation to climate change. We assessed the temperature response of leaf photosynthetic parameters in wheat grown under contrasting water regimes and growth temperatures (Tgrowth ). Two independent experiments were conducted under controlled conditions. In Experiment 1, two wheat genotypes were subjected to well-watered or drought-stressed treatments; in Experiment 2, the two water regimes combined with high, medium and low Tgrowth were imposed on one genotype. Parameters of a biochemical C3 -photosynthesis model were estimated at six leaf temperatures for each factor combination. Photosynthesis acclimated more to drought than to Tgrowth . Drought affected photosynthesis by lowering its optimum temperature (Topt ) and the values at Topt of light-saturated net photosynthesis, stomatal conductance, mesophyll conductance, the maximum rate of electron transport (Jmax ) and the maximum rate of carboxylation by Rubisco (Vcmax ). Topt for Vcmax was up to 40°C under well-watered conditions but 24-34°C under drought. The decrease in photosynthesis under drought varied among Tgrowth but was similar between genotypes. The temperature response of photosynthetic quantum yield under drought was partly attributed to photorespiration but more to alternative electron transport. All these changes in biochemical parameters could not be fully explained by the changed leaf nitrogen content. Further model analysis showed that both diffusional and biochemical parameters of photosynthesis and their thermal sensitivity acclimate little to Tgrowth , but acclimate considerably to drought and the combination of drought and Tgrowth . The commonly used modelling approaches, which typically consider the response of diffusional parameters, but ignore acclimation responses of biochemical parameters to drought and Tgrowth , strongly overestimate leaf photosynthesis under variable temperature and drought.


Assuntos
Fotossíntese , Triticum , Triticum/genética , Fotossíntese/fisiologia , Secas , Aclimatação , Água , Folhas de Planta , Dióxido de Carbono
9.
AoB Plants ; 14(4): plac029, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35854681

RESUMO

Plant responses to abiotic stresses are complex and dynamic, and involve changes in different traits, either as the direct consequence of the stress, or as an active acclimatory response. Abiotic stresses frequently occur simultaneously or in succession, rather than in isolation. Despite this, most studies have focused on a single stress and single or few plant traits. To address this gap, our study comprehensively and categorically quantified the individual and combined effects of three major abiotic stresses associated with climate change (flooding, progressive drought and high temperature) on 12 phenotypic traits related to morphology, development, growth and fitness, at different developmental stages in four Arabidopsis thaliana accessions. Combined sublethal stresses were applied either simultaneously (high temperature and drought) or sequentially (flooding followed by drought). In total, we analysed the phenotypic responses of 1782 individuals across these stresses and different developmental stages. Overall, abiotic stresses and their combinations resulted in distinct patterns of effects across the traits analysed, with both quantitative and qualitative differences across accessions. Stress combinations had additive effects on some traits, whereas clear positive and negative interactions were observed for other traits: 9 out of 12 traits for high temperature and drought, 6 out of 12 traits for post-submergence and drought showed significant interactions. In many cases where the stresses interacted, the strength of interactions varied across accessions. Hence, our results indicated a general pattern of response in most phenotypic traits to the different stresses and stress combinations, but it also indicated a natural genetic variation in the strength of these responses. This includes novel results regarding the lack of a response to drought after submergence and a decoupling between leaf number and flowering time after submergence. Overall, our study provides a rich characterization of trait responses of Arabidopsis plants to sublethal abiotic stresses at the phenotypic level and can serve as starting point for further in-depth physiological research and plant modelling efforts.

10.
J Exp Bot ; 73(10): 3173-3188, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35323898

RESUMO

Breeding for improved leaf photosynthesis is considered as a viable approach to increase crop yield. Whether it should be improved in combination with other traits has not been assessed critically. Based on the quantitative crop model GECROS that interconnects various traits to crop productivity, we review natural variation in relevant traits, from biochemical aspects of leaf photosynthesis to morpho-physiological crop characteristics. While large phenotypic variations (sometimes >2-fold) for leaf photosynthesis and its underlying biochemical parameters were reported, few quantitative trait loci (QTL) were identified, accounting for a small percentage of phenotypic variation. More QTL were reported for sink size (that feeds back on photosynthesis) or morpho-physiological traits (that affect canopy productivity and duration), together explaining a much greater percentage of their phenotypic variation. Traits for both photosynthetic rate and sustaining it during grain filling were strongly related to nitrogen-related traits. Much of the molecular basis of known photosynthesis QTL thus resides in genes controlling photosynthesis indirectly. Simulation using GECROS demonstrated the overwhelming importance of electron transport parameters, compared with the maximum Rubisco activity that largely determines the commonly studied light-saturated photosynthetic rate. Exploiting photosynthetic natural variation might significantly improve crop yield if nitrogen uptake, sink capacity, and other morpho-physiological traits are co-selected synergistically.


Assuntos
Fotossíntese , Melhoramento Vegetal , Nitrogênio , Fenótipo , Fotossíntese/fisiologia , Folhas de Planta/genética
11.
Plant Cell Environ ; 45(7): 2062-2077, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35357701

RESUMO

We assessed how the temperature response of leaf day respiration (Rd ) in wheat responded to contrasting water regimes and growth temperatures. In Experiment 1, well-watered and drought-stressed conditions were imposed on two genotypes; in Experiment 2, the two water regimes combined with high (HT), medium (MT) and low (LT) growth temperatures were imposed on one of the genotypes. Rd was estimated from simultaneous gas exchange and chlorophyll fluorescence measurements at six leaf temperatures (Tleaf ) for each treatment, using the Yin method for nonphotorespiratory conditions and the nonrectangular hyperbolic fitting method for photorespiratory conditions. The two genotypes responded similarly to growth and measurement conditions. Estimates of Rd for nonphotorespiratory conditions were generally higher than those for photorespiratory conditions, but their responses to Tleaf were similar. Under well-watered conditions, Rd and its sensitivity to Tleaf slightly acclimated to LT, but did not acclimate to HT. Temperature sensitivities of Rd were considerably suppressed by drought, and the suppression varied among growth temperatures. Thus, it is necessary to quantify interactions between drought and growth temperature for reliably modelling Rd under climate change. Our study also demonstrated that the Kok method, one of the currently popular methods for estimating Rd , underestimated Rd significantly.


Assuntos
Secas , Triticum , Folhas de Planta/fisiologia , Respiração , Temperatura , Triticum/fisiologia , Água
12.
Photosynth Res ; 149(3): 275-287, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34091828

RESUMO

The role of bundle sheath conductance (gbs) in sustaining sugarcane photosynthesis under nitrogen deficiency was investigated. Sugarcane was grown under different levels of nitrogen supply and gbs was estimated using simultaneous measurements of leaf gas exchange and chlorophyll fluorescence at 21% or 2% [O2] and varying air [CO2] and light intensity. Maximum rates of PEPC carboxylation, Rubisco carboxylation, and ATP production increased with an increase in leaf nitrogen concentration (LNC) from 1 to 3 g m-2. Low nitrogen supply reduced Rubisco and PEPC abundancies, the quantum efficiency of CO2 assimilation and gbs. Because of reduced gbs, low photosynthetic rates were not associated with increased leakiness under nitrogen deficiency. In fact, low nitrogen supply increased bundle sheath cell wall thickness, probably accounting for low gbs and increased estimates of [CO2] at Rubisco sites. Effects of nitrogen on expression of ShPIP2;1 and ShPIP1;2 aquaporins did not explain changes in gbs. Our data revealed that reduced Rubisco carboxylation was the main factor causing low sugarcane photosynthesis at low nitrogen supply, in contrast to the previous report on the importance of an impaired CO2 concentration mechanism under N deficiency. Our findings suggest higher investment of nitrogen into Rubisco protein would favour photosynthesis and plant performance under low nitrogen availability.


Assuntos
Clorofila/metabolismo , Luz , Nitrogênio/deficiência , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Saccharum/metabolismo , Produtos Agrícolas/metabolismo
13.
Plant Cell Environ ; 44(9): 2811-2837, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33872407

RESUMO

On the occasion of the 40th anniversary of the publication of the landmark model by Farquhar, von Caemmerer & Berry on steady-state C3 photosynthesis (known as the "FvCB model"), we review three major further developments of the model. These include: (1) limitation by triose phosphate utilization, (2) alternative electron transport pathways, and (3) photorespiration-associated nitrogen and C1 metabolisms. We discussed the relation of the third extension with the two other extensions, and some equivalent extensions to model C4 photosynthesis. In addition, the FvCB model has been coupled with CO2 -diffusion models. We review how these extensions and integration have broadened the use of the FvCB model in understanding photosynthesis, especially with regard to bioenergetic stoichiometries associated with photosynthetic quantum yields. Based on the new insights, we present caveats in applying the FvCB model. Further research needs are highlighted.


Assuntos
Modelos Biológicos , Fotossíntese , Transporte de Elétrons , Redes e Vias Metabólicas , Plantas/metabolismo
14.
New Phytol ; 231(6): 2113-2116, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33813738

Assuntos
Cinética , Temperatura
15.
Plant Physiol Biochem ; 162: 690-698, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33780742

RESUMO

Drought significantly decreases crop productivity, especially in high water consuming crops like rice. Grain filling is one of the important critical growth phases in rice and drought during this phase leads to significant reduction in yield. In this study, a comparison was made between IR64 (drought susceptible) and Apo (drought tolerant) rice genotypes to capture the response to water limitation (50% field capacity (FC)) compared with the control (100%FC) during grain filling. Plants were grown in a high-throughput phenomics facility for precise imposition of moisture stress during grain filling. Apo performed better in water limited conditions with lower reduction of photosynthetic rate and maintenance of lower leaf temperature than IR64. Days from sowing to maturity, spikelet fertility and seed weight were more impeded by water limitation in IR64 than in Apo. Unlike Apo, IR64 did not show any decrease in transpiration rate at 50%FC compared with 100%FC. Metabolomic profiling of spikelets at grain filling showed distinct effects of water limitation on accumulation of metabolites, especially in Apo. Secondary metabolism, mainly the phenylpropanoid pathway involved in scavenging mechanisms, was upregulated in Apo. Accumulation of most amino acids was significantly higher in IR64 than in Apo. Due to higher rates of photosynthesis under stress, most carbohydrates accumulated more in Apo than in IR64 at 50%FC. Sucrose transporters were significantly upregulated in water limited conditions especially in Apo. Overall, thanks to higher source capacity, more source to sink transport and better scavenging, Apo showed a lower reduction in yield than IR64.


Assuntos
Oryza , Grão Comestível , Genótipo , Metaboloma , Oryza/genética , Água
16.
New Phytol ; 229(5): 2400-2409, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067814

RESUMO

C4 crops of agricultural importance all belong to the NADP-malic enzyme (ME) subtype, and this subtype has been the template for C4 introductions into C3 crops, like rice, to improve their productivity. However, the ATP cost for the C4 cycle in both NADP-ME and NAD-ME subtypes accounts for > 40% of the total ATP requirement for CO2 assimilation. These high ATP costs, and the associated need for intense cyclic electron transport and low intrinsic quantum yield ΦCO2 , are major constraints in realizing strong improvements of canopy photosynthesis and crop productivity. Based on mathematical modelling, we propose a C4 ideotype that utilizes low chloroplastic ATP requirements present in the nondomesticated phosphoenolpyruvate carboxykinase (PEP-CK) subtype. The ideotype is a mixed form of NAD(P)-ME and PEP-CK types, requires no cyclic electron transport under low irradiances, and its theoretical ΦCO2 is c. 25% higher than that of a C4 crop type. Its cell-type-specific ATP and NADPH requirements can be fulfilled by local energy production. The ideotype is projected to have c. 10% yield advantage over NADP-ME-type crops and > 50% advantage over C3 counterparts. The ideotype provides a unique (theoretical) case where ΦCO2 could be improved, thereby paving a new avenue for improving photosynthesis in both C3 and C4 crops.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Malato Desidrogenase , Folhas de Planta , Transporte de Elétrons , Malato Desidrogenase/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese , Folhas de Planta/metabolismo
17.
Glob Chang Biol ; 27(3): 689-708, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33216414

RESUMO

Global dimming reduces incident global radiation but increases the fraction of diffuse radiation, and thus affects crop yields; however, the underlying mechanisms of such an effect have not been revealed. We hypothesized that crop source-sink imbalance of either carbon (C) or nitrogen (N) during grain filling is a key factor underlying the effect of global dimming on yields. We presented a practical framework to assess both C and N source-sink relationships, using data of biomass and N accumulation from periodical sampling conducted in field experiments for wheat and rice from 2013 to 2016. We found a fertilization effect of the increased diffuse radiation fraction under global dimming, which alleviated the negative impact of decreased global radiation on source supply and sink growth, but the source supply and sink growth were still decreased by dimming, for both C and N. In wheat, the C source supply decreased more than the C sink demand, and as a result, crops remobilized more pre-heading C reserves, in response to dimming. However, these responses were converse in rice, which presumably stemmed from the more increment in radiation use efficiency and the more limited sink size in rice than wheat. The global dimming affected source supply and sink growth of C more significantly than that of N. Therefore, yields in both crops were dependent more on the source-sink imbalance of C than that of N during grain filling. Our revealed source-sink relationships, and their differences and similarities between wheat and rice, provide a basis for designing strategies to alleviate the impact of global dimming on crop productivity.


Assuntos
Carbono , Oryza , Grão Comestível , Nitrogênio , Triticum
18.
Plant Phenomics ; 2020: 5905371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33313560

RESUMO

Drought tolerance is governed by constitutive and acquired traits. Combining them has relevance for sustaining crop productivity under drought. Mild levels of stress induce specific mechanisms that protect metabolism when stress becomes severe. Here, we report a comparative assessment of "acquired drought tolerance (ADT)" traits in two rice cultivars, IR64 (drought susceptible) and Apo (tolerant), and a drought-tolerant wheat cultivar, Weebill. Young seedlings were exposed to progressive concentrations of methyl viologen (MV), a stress inducer, before transferring to a severe concentration. "Induced" seedlings showed higher tolerance and recovery growth than seedlings exposed directly to severe stress. A novel phenomic platform with an automated irrigation system was used for precisely imposing soil moisture stress to capture ADT traits during the vegetative stage. Gradual progression of drought was achieved through a software-controlled automated irrigation facility. This facility allowed the maintenance of the same level of soil moisture irrespective of differences in transpiration, and hence, this platform provided the most appropriate method to assess ADT traits. Total biomass decreased more in IR64 than in Apo. The wheat cultivar showed lower levels of damage and higher recovery growth even compared to Apo. Expression of ROS-scavenging enzymes and drought-responsive genes was significantly higher in Apo than in IR64, but differences were only marginal between Apo and Weebill. The wheat cultivar showed significantly higher stomatal conductance, carbon gain, and biomass than the rice cultivars, under drought. These differences in ADT traits between cultivars as well as between species can be utilised for improving drought tolerance in crop plants.

19.
Curr Opin Plant Biol ; 56: 259-272, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32682621

RESUMO

Atmospheric CO2 concentration [CO2] has increased from 260 to 280µmolmol-1 (level during crop domestication up to the industrial revolution) to currently 400 and will reach 550µmolmol-1 by 2050. C3 crops are expected to benefit from elevated [CO2] (e-CO2) thanks to photosynthesis responsiveness to [CO2] but this may require greater sink capacity. We review recent literature on crop e-CO2 responses, related source-sink interactions, how abiotic stresses potentially interact, and prospects to improve e-CO2 response via breeding or genetic engineering. Several lines of evidence suggest that e-CO2 responsiveness is related either to sink intrinsic capacity or adaptive plasticity, for example, involving enhanced branching. Wild relatives and old cultivars mostly showed lower photosynthetic rates, less downward acclimation of photosynthesis to e-CO2 and responded strongly to e-CO2 due to greater phenotypic plasticity. While reverting to such archaic traits would be an inappropriate strategy for breeding, we argue that substantial enhancement of vegetative sink vigor, inflorescence size and/or number and root sinks will be necessary to fully benefit from e-CO2. Potential ideotype features based on enhanced sinks are discussed. The generic 'feast-famine' sugar signaling pathway may be suited to engineer sink strength tissue-specifically and stage-specifically and help validate ideotype concepts. Finally, we argue that models better accounting for acclimation to e-CO2 are needed to predict which trait combinations should be targeted by breeders for a CO2-rich world.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Aclimatação , Carbono , Produtos Agrícolas/genética , Fotossíntese
20.
New Phytol ; 227(6): 1764-1775, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32369617

RESUMO

The Kok effect refers to the abrupt decrease around the light compensation point in the slope of net photosynthetic rate vs irradiance. Arguably, this switch arises from light inhibition of respiration, allowing the Kok method to estimate day respiration (Rd ). Recent analysis suggests that increasing proportions of photorespiration (quantified as Γ*/Cc , the ratio of CO2 compensation point Γ* to chloroplast CO2 concentration, Cc ) with irradiance explain much of the Kok effect. Also, the Kok method has been modified to account for the decrease in PSII photochemical efficiency (Φ2 ) with irradiance. Using a model that illustrates how varying Rd , Γ*/Cc , Φ2 and proportions of alternative electron transport could engender the Kok effect, we quantified the contribution of these parameters to the Kok effect measured in sunflower across various O2 and CO2 concentrations and various temperatures. Overall, the decreasing Φ2 with irradiance explained c. 12%, and the varying Γ*/Cc explained c. 25%, of the Kok effect. Maximum real light inhibition of Rd was much lower than the inhibition derived from the Kok method, but still increased with photorespiration. Photorespiration had a dual contribution to the Kok effect, one via the varying Γ*/Cc and the other via its participation in light inhibition of Rd .


Assuntos
Dióxido de Carbono , Luz , Transporte de Elétrons , Fotossíntese , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...